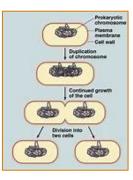
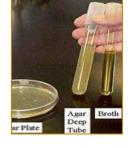
O Microbiology 2025-2024 Dr.Saja Ebdah

Bacterial Growth& physiology

Bacterial Growth


- > Increase in *size* and *number* of organism
- Indicated by:
 - **1.** Turbidity of the fluid media (broth)
 - 2. Colonies on solid media (Macroscopic product)
 - *Colony*: is a group of bacteria that originates from a single bacterium *cultured* on solid media. after 20-30 divisions (through binary fission)
 - The number of colonies will reach approximately 1 million (2^20) after 20-30 divisions of a single bacterium.
 - ✓ Generation time (doubling time) varies between different bacteria:
 - Rapid: 13min (V.cholerae)
 - Slow: 24 hrs (*M.tuberculosis*)
- Bacterial reproduction by **Binary fission**
 - 1. *Elongation* (in one side of DNA)
 - 2. *Separation* of 2 strands (ssDNA attached to mesosomes by their enzyme separate each strand)
 - 3. Separate ssDNA & become dsDNA
 - 4. *Formation* of division septum
 - 5. *Cell separation* (2 daughter cells)
- Bacterial culture media: [Artificial]
 - ▶ Bacteria grow (In vitro) \rightarrow Need nutrients for growth
 - > Purpose:
 - ✓ *Study* Properties
 - ✓ Isolation & *diagnosis* (Causative agent)
 - ✓ Prepare *vaccine* & Other product
 - For selection proper *antibiotics*
- **Classification** of media:
 - Liquid (*broth*)
 - Solid (*agar*)


• Types of media

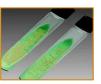
A. Simple media

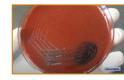
- > Basic requirement for growth of most bacteria
 - 1. Peptone water
 - ✓ Peptone + 0.5% NaCl
 - Purpose: Enhancement
 - 🖌 Sugar media
 - 2. Nutrient broth
 - ✓ Meat extract
 - Enhancement
 - 3. Nutrient agar plate
 - ✓ Nutrient broth + 2% agar agar (Seaweed)
 - ✓ Staph. aureus

Arkan academy

B. Enriched media

- > Fastidious bacteria :need blood or serum for growth
 - 1. Blood agar
 - ✓ Nutrient agar heated at 45°C (semisolid) + sheep blood
 - ✓ Streptococci/ Strept. Pyogenes
 - <u>Haemolysis on blood agar</u>:
 - Complete (*beta*) haemolysis: [clear]
 - Staphylococcus aureus
 - Streptococcus pyogenes
 - Partial (*alpha*) haemolysis: [green]
 - Streptococcus viridans
 - Pneumococci.
 - No (*gamma*) haemolysis: [no change]
 - Enterococci.
 - 2. Chocolate agar
 - ✓ Nutrient agar heated at 100°C, add blood
 - ✓ Hb → Heat → Haematin (Chocolate)
 - ✓ Haemophilus Neisseria
- C. Selective media
 - > Allow a certain organism to grow (Selective) & inhibits the growth of others
 - 1. Lowenstein Jensen medium
 - ✓ Selective material <u>Malachite green</u>
 - ✓ Mycobacterium tuberculosis
 - 2. Blood telluriteagar
 - ✓ Selective material <u>Potassium tellurite</u>
 - ✓ C.diphtheriae


D. Differential media


- Selective (Allow a certain organism to grow) + Indicator (Indicator to differentiate (change in visibly))
 - 1. MacConkey's agar
 - Bile (selective to Enterobacteria) +Lactose(test sugar)+ Peptone+ Neutral red (pH indicator)
 - ✓ If *can* fermentation lactose the color appear : *pink*
 - ✓ If *cannot* fermentation lactose the color appear :*pale*
 - 2. Mannitol salt agar
 - ✓ (high salt 7.5% NaCl) +Phenol red (pH indicator)
 - Staphylococcus aureus can ferment the mannitol sugar color appear: yellow
 - 3. Thiosulfate-Citrate-Bile-Sucrose Agar. (TCBS)
 - Thiosulphate +Bile + Citrate [selective] + Sucrose [test sugar]+ Bromothymolblue [indicator]
 - ✓ *V.cholera* can ferment sugar from green to yellow

Arkan academy

Bacterial growth curve

- > *Definition:* If a small number of bacteria are inoculated into a liquid nutrient medium, within 72 hours they will go through the following phases:
- 1. Lag phase:
 - There is little to *no increase* in the number of cells. However, metabolic activity is *high*, and cell size increases as the bacteria prepare for growth.
- 2. Log Phase (Exponential Phase):
 - ✓ The number of bacteria, along with protein and enzyme production, *increases* rapidly. However, cell size *decreases* due to the high rate of cell division.
- 3. Stationary phase:
 - ✓ There is an *equilibrium* between cell division and death (constant number)
- 4. Decline phase (Death phase):
 - ✓ The number of deaths *exceeds* the number of new cells formed. (nutrients and O2 start to deplete & toxic materials start to be increase)
- > Bacteria growth curve in human body:
 - 1. Lag phase : Incubation period
 - 2. Log phase: *Invasive* start symptoms and sign
 - 3. Stationary phase: *Course* of the disease
 - 4. Decline phase : Convalescent phase (*recovery*)

Bacterial Growth Curve

• Bacterial growth requirements

- A) Nutrition
 - > to Maintenance of bacterial growth
 - > Autotrophic
 - [auto= self / Trophic=nutrition]
 - ✓ Utilize simple inorganic substance
 - ✓ Uses CO₂ as a carbon source and ammonium as a nitrogen source to produce complex organic materials. (*saprophytic*)
 - ✓ *No* medical importance

> Heterotrophic

- ✓ [hetero= different/ Trophic= nutrition]
- These bacteria require complex, preformed organic substances (e.g., sugars, proteins) from living cells and typically live as parasites
- ✓ *Medical* important

B) Gaseous

- > Respiration:
 - ✓ Glucose catabolism \rightarrow Energy production
 - Aerobic respiration (O2)
 - Anaerobic respiration (No O2)
- > O2 requirement, bacteria are classified into 5 groups:
 - 1. Obligate aerobes (Aerobic respiration)
 - ✓ *Presence* of O2 to growth
 - Aerobic Respiration: The production of *energy* (ATP) through the catabolism of glucose, primarily via glycolysis, in the presence of *oxygen*

1

2

3

4

5

✓ e.g. Pseudomonas aeruginosa

1. Obligate Aerob

otolerant Anaerol

- ✓ Pathway :
 - Glucose +ADP \rightarrow 2NAD+ 2NADH \rightarrow 2 pyruvate + 2 ATP
 - 2 pyruvate \rightarrow Kreb's cycle \rightarrow 2FADH2 +8NADH + 2 ATP
 - [Oxidative phosphorylation] $O2 \rightarrow Carry 2H \rightarrow H2O + 34 ATP$
 - The result: 38 ATP + Highly toxic molecules [Superoxide and hydrogen peroxide]
- ✓ *Bacterial Enzymes* to Remove Toxins:
 - Superoxide Dismutase: Cleaves superoxide (O₂) into less harmful molecules.
 - *Catalase*: Cleaves hydrogen peroxide (H₂O₂) into water and oxygen

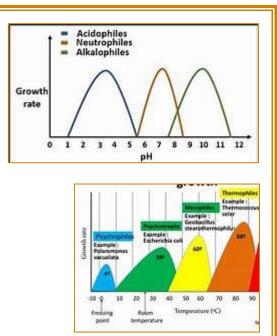
2. Obligate anaerobes (Anaerobic respiration)

- ✓ Can growth in *absence* of O2
- ✓ E.g. Bacteroides fragilis
- ✓ Pathway:
 - Glucose +ADP \rightarrow 2NAD+ 2NADH \rightarrow 2 pyruvate + 2 ATP
 - 2 pyruvate \rightarrow Kreb's cycle \rightarrow 2FADH2 +8NADH + 2 ATP
 - No O2 \rightarrow Other pathway
 - The organism used inorganic molecules : Nitrate/ sulfate /Co2 → Carry H⁺ +13 ATP The result:13 ATP + 4 ATP =17 ATP
- ✓ *Lack* Superoxide dismutase and Catalase so don't produce toxic material
- 3. <u>Facultative anaerobes</u>
 - ✓ These bacteria can grow in both the *presence* and *absence* of oxygen. However, their growth rate increases in the presence of oxygen.(Most bacteria)
 - ✓ *The pathway:*
 - Glucose \rightarrow glycolysis (anaebobes) \rightarrow 2 Pyruvate +2ATP
 - No Kreb's cycle and other pathway (absence of carriers)
 - Result: accumulate acid and alcohol [fermentation]

4. Micro-aerophilic

- ✓ These bacteria *do not grow in the presence* of high concentrations of oxygen because they produce excessive amounts of superoxide and hydrogen peroxide (H₂O₂).
- ✓ Low O₂ (2-10% O₂): this percentage of O2 helps them manage reactive oxygen species.
- ✓ E.g :*Campylobacter*, *Helicobacter*

5. Aero-tolerant

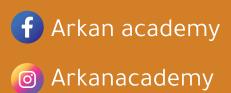

- ✓ *Do not require* oxygen for growth but can tolerate its presence because they produce a low concentration of superoxide dismutase.
- ✓ E.g: *Cl.perfringens*

C) CO2 requirements

- 1. CO2 (0.03%) : Present in air is sufficient [most bacteria]
- 2. CO2 (5-10%) : Capnophilic
 - Neisseria
 - Brucella

D) <u>pH</u>

- > *Neutrophilic*: pH (7.2 7.4) (Most bacteria)
- > *Alkalophilic*: pH (9) (*Vibrio cholerae*)
- > Acidophilic: pH (4) (Lactobacilli)



E) <u>Temperature</u>

- Mesophilic (20 45) (Most bacteria)
- > *Psychrophilic* (0-15)
- ➤ Thermophilic (55-65)

علم في فك مقارب

🛞 www.arkan-academy.com

🔊 +962 790408805